Proyecto MERIT: microondas para la obtención de hidrógeno verde

El proyecto MERIT pretende desarrollar una tecnología innovadora para producir hidrógeno verde a partir de agua y energías renovables aprovechando la aceleración por microondas de reacciones de reducción-oxidación (redox) en materiales iónicos de estado sólido (SSIM) a temperaturas sin precedentes (≈ 400 °C).

Esta novedosa ruta electroquímica de disociación del agua, que sólo proporciona O2 como subproducto, supone una prometedora oportunidad para la producción de H2 sostenible y libre de carbono, con una estimación de costes energéticos bajos y alta eficiencia.

El uso de bajas temperaturas en la división del agua por microondas alivia los inconvenientes de las tecnologías más modernas, en particular la división termoquímica solar (TWS), y permite alcanzar eficiencias energéticas mucho más altas, es decir, menores costes energéticos.

Además, la naturaleza sin contacto de la aplicación de microondas facilita la modularidad del sistema, lo que permite su incorporación a un amplio conjunto de aplicaciones. A diferencia de los electrolizadores convencionales, que están limitados por la superficie del electrodo, la reacción de formación de H2 activada por microondas tiene lugar en todo un volumen, concretamente en el lecho fijo del material sólido. Esto facilitará la ingeniería y el desarrollo de una tecnología de reactor de microondas escalable. En este proyecto, el grupo DIMAS se encargará de diseñar un reactor de microondas para realizar las reacciones redox necesarias, en una contribución pionera con el potencial de revelar un nuevo paradigma tecnológico para la obtención de hidrógeno verde.

This study forms part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana

New paper published in Measurement journal

Researchers from DIMAS have recently published a new research paper in Measurement Journal, entitled “Dielectric and optical evaluation of high-emissivity coatings for temperature measurements in microwave applications”.

Microwave equipment to characterize the dielectric properties of coatings at high temperatures.

High-emissivity coatings are commonly used as references to obtain accurate temperature measurements in heating applications and processes. The composition of these commercial coatings is often based on metallic oxides and particles that interact with the electromagnetic fields present in microwave applications, especially at high temperatures (1000ºC). The paper illustrates how a careful characterization of optical and dielectric properties under representative operating conditions (temperature range, microwave exposure) is vital in order to select the appropriate reference coating to obtain reliable temperature measurements in microwave applications.

The possibility to employ advanced in situ microwave characterization techniques proved to be crucial to understand the interaction between these temperature-reference coatings and the microwave fields, giving unprecedented information to select the appropriate coating and operating conditions.

This research was funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement number 820783, the DESTINY Project. You will find additional information about the DESTINY Project here.

DESTINY Project Newsletter #7 Available

The microwave division of ITACA participates in the European project DESTINY: Development of an Efficient Microwave System for Material Transformation in energy Intensive processes for an improved Yield (H2020-NMBP-SPIRE-2018).

We are glad to announce that the 7th DESTINY project newsletter is published!

This issue focuses on the most important progresses that the consortium has made in the last months, such as the set-up of the pilot plant, participation in international events and also updates on the activities carried out in the frame of the NiChe Cluster. Read the full newsletter here!

Enjoy reading the 6th DESTINY newsletter

The microwave division of ITACA participates in the European project DESTINY: Development of an Efficient Microwave System for Material Transformation in energy Intensive processes for an improved Yield (H2020-NMBP-SPIRE-2018).

With 14 partners covering 9 European countries, DESTINY pursues the introduction of the “first-of-a-kind” high temperature microwave processing system at industrial level, offering a variety of vital benefits to energy intensive sectors (ceramic pigments, steel and clay sectors): reduced energy consumption, lower lifetime operating costs and enhanced sustainability profile. DESTINY will give these sectors the chance to replace their standard heating technologies averagely cutting by 30% the required energy for production and decreasing the CO2 emissions.

DIMAS activities within the project aim to realize a functional, green and energy saving, scalable and replicable solution, employing microwave technology for continuous material processing in the considered energy intensive industries.

Curious to discover more about our ultimate Dissemination and Communication actions? Then read the sixth DESTINY newsletter! In this issue we present you the latest events attended, the newest publications released and the project video! Download the newsletter here.

DESTINY project video

The microwave division of ITACA participates in the European project DESTINY: Development of an Efficient Microwave System for Material Transformation in energy INtensive processes for an improved Yield (H2020-NMBP-SPIRE-2018).

We are proud to present the DESTINY video!

The video shortly explains the project, its impact and all the progresses achieved so far.

The video is also available subtitled, take a look at it here!

DESTINY Project Newsletter #5 Available

The microwave division of ITACA participates in the European project DESTINY: Development of an Efficient Microwave System for Material Transformation in energy INtensive processes for an improved Yield (H2020-NMBP-SPIRE-2018).

With 14 partners covering 9 European countries, DESTINY pursues the introduction of the “first-of-a-kind” high temperature microwave processing system at industrial level, offering a variety of vital benefits to energy intensive sectors (ceramic pigments, steel and clay sectors): reduced energy consumption, lower lifetime operating costs and enhanced sustainability profile. DESTINY will give these sectors the chance to replace their standard heating technologies averagely cutting by 30% the required energy for production and decreasing the CO2 emissions.

DIMAS activities within the project aim to realize a functional, green and energy saving, scalable and replicable solution, employing microwave technology for continuous material processing in the considered energy intensive industries.

Along with the latest technical progresses gained by the consortium, DESTINY has also started a collaboration with other SPIRE projects, with the aim to boost their visibility and to share interesting results to maximize their impacts and theirs exploitation.

Let’s take a look at this journey with LIBERATE, PERFORM AND SIMPLIFY projects reading the fifth issue of the DESTINY newsletter!

DIMAS has published 3 new papers in the last 3 months

DIMAS has recently published 3 new papers in 3 different journals, each one focused in different research activities developed in our laboratory.

1) Power measurement application

Fig. 1.-Example, from the paper, of the improvement of the measurements

The first one, published at “IEEE Microwave and Wireless Components Letters” [1], is about the measurement of high microwave power with directional couplers. The main objective of the paper is to calibrate the directional coupler with just some shortcircuits acting as loads and an on-line impedance measurement of the load to have an accuarte measurement of the incident power, avoiding the problems associated to the directivity of the directional coupler (that some times is not as good as desired) and also to the load (that can be highly absorbing or showing a high reflection coefficient).

The figure 1 shows an example of the improvement of the power measurements and the paper can be downloaded from: https://doi.org/10.1109/LMWC.2021.3070788

[1] Felipe L. Penaranda-Foix, Jose M. Catala-Civera, Jose D. Gutierrez-Cano and Beatriz Garcia-Banos, “Directional Coupler Calibration for Accurate Online Incident Power Measurements”. IEEE Microwave and Wireless Components Letters, Vol. 31, No. 6, June 2021, pp. 624-627. https://doi.org/10.1109/LMWC.2021.3070788

2) Dielectric measurements

Fig. 2.-Actual measurement system

The second paper, published at “Journal of Food Engineering” [2], deals with one of the most successful activities of the research group: permittivity measurements.

The paper presents a new cell optimized to measure high loss dielectric samples, especially foodstuff, at radio frequencies (around 40 MHz), where some commercially available cells usually present high uncertainty in the measurements. This cell also provides the possibility of on-line temperature permittivity measurements.

Figure 2 shows a photo of the actual system, as it has been published.

[2] J. D. Gutiérrez-Cano, J. M. Catalá-Civera, F. L. Penaranda-Foix and P. J. Plaza-González, “Improved open-ended coaxial probe for temperature-dependent permittivity measurements of foodstuff at radio frequencies”. Journal of Food Engineering, Vol. 316, March 2022, on-line September 22nd, 2021. https://doi.org/10.1016/j.jfoodeng.2021.110823

3) Microwave microscope

Fig. 3.-Microscope detecting hidden pictures

Finally, the 3rd paper, published at “Sensors” [3], and titled “Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope”, introduces a resonant system, based on a coaxial transmission line, that is able to detect hidden marks in papers that require extreme security, as, for example, the money. Notes always have a loto of different security marks, with a different level of security, and the goal of this paper is to provide a new method of detection of counterfeit notes based on hidden marks.

[3] J. D. Gutiérrez-Cano, J. M. Catalá-Civera, P. J. Plaza-González and F. L. Penaranda-Foix, “Detection of Anti-Counterfeiting Markers through Permittivity Maps Using a Micrometer Scale near Field Scanning Microwave Microscope”. Sensors 2021, 21, 5463. https://doi.org/10.3390/s21165463

DESTINY Project Newsletter #4 Available

The microwave division of ITACA participates in the European project DESTINY: Development of an Efficient Microwave System for Material Transformation in energy INtensive processes for an improved Yield (H2020-NMBP-SPIRE-2018).

With 14 partners covering 9 European countries, DESTINY pursues the introduction of the “first-of-a-kind” high temperature microwave processing system at industrial level, offering a variety of vital benefits to energy intensive sectors (ceramic pigments, steel and clay sectors): reduced energy consumption, lower lifetime operating costs and enhanced sustainability profile. DESTINY will give these sectors the chance to replace their standard heating technologies averagely cutting by 30% the required energy for production and decreasing the CO2 emissions.

DIMAS activities within the project aim to realize a functional, green and energy saving, scalable and replicable solution, employing microwave technology for continuous material processing in the considered energy intensive industries.

DESTINY is moving forward and the consortium has done lots of interesting findings related to the Key Performance Indicators and corresponding targets set by the SPIRE call. Take a more detailed look at these achievements by reading the latest issue of the project newsletter here!

Proyecto para extracción eco-eficiente de metales críticos

Investigadores de DIMAS participan en SULFOMETAE (RTC-2017-6619-5), un proyecto para la extracción de metales críticos a partir de menas con sulfuros. En concreto, se está trabajando en un novedoso sistema de microondas para realizar un tratamiento selectivo de menas metálicas complejas con alto contenido en sulfuros para la concentración y extracción polimetálica, y la simultánea obtención de derivados de azufre como producto comercial.

Para ello, ha sido determinante una primera etapa para obtener el conocimiento de las reacciones y entre los campos electromagnéticos en el intervalo de frecuencias de las microondas de los sulfuros metálicos y de los productos de reacción, así como los efectos físicos y químicos producidos con la exposición. Igualmente, se han estudiado los efectos no térmicos pero determinantes para los procesos, a través de parámetros como la permitividad compleja.

Asímismo, el grupo DIMAS colabora en este proyecto con el diseño de un equipo de procesado basado en tecnología microondas con atmósfera controlada para el tratamiento de minerales en polvo, siendo importante la integración del aplicador microondas con un sistema de extracción de gases (sulfuros) adaptado al proceso en continuo.

Los experimentos realizados han permitido verificar que la tecnología desarrollada en el proyecto permite realizar un calentamiento selectivo de los metales, con una mayor regulación y control del proceso a partir de un sistema muy eficiente energéticamente.

Esto significa que se ha desarrollado un proceso económicamente viable para la explotación de los grandes yacimientos complejos de minerales ricos en azufre que actualmente no tienen una tecnología para valorizar sus recursos de forma sostenible, lo que supone un hito tecnológico en la capacidad de explotación de recursos minerales complejos. El procedimiento y dispositivo desarrollados han sido protegidos mediante una patente, lo que supone un posicionamiento estratégico en el mercado de la minería internacional.

New paper published in Metals Journal

MetalsResearchers from DIMAS have recently published a new research paper at Metals Journal, entitled “High Temperature Dielectric Properties of Iron- and Zinc-Bearing Products during Carbothermic Reduction by Microwave Heating”.

In this work, the carbothermic reduction of iron- and zinc-bearing products is studied through in situ microwave heating, dielectric properties monitoring, and mass spectrometry up to high temperatures (1000 °C). The results are correlated to the information provided by conventional analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetry (TG).

This combination revealed interesting information about the interaction of these complex materials with microwave fields, and provided new evidence about the particular conditions of this microwave-driven reduction process.

New_paper_published_in_Metals_Journal_2

The figure shows an example of the dielectric properties and thermal analyses (TG and DSC) of a mixtures of steel work residues (BOF dusts and sludge) rich in zinc and iron, heated up to 1000ºC. Correlation of the different techniques allows a detailed study of seven different process stages with an accurate determination of the reaction temperatures. The presented results suggest that some reactions take place at lower temperatures than those observed in the conventional process, probably promoted by molecular vibrations imposed by the microwave field.

This work also explores the influence of other parameters, such as the apparent density or the amount of carbonaceous material on the resulting dielectric properties, providing useful information for the development of a potential microwave industrial application in the metallurgy field.

This research was funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement number 820783, the DESTINY Project. You will find additional information about the DESTINY Project here.

Destiny_logo_conjunto